
Certified PDF Api
Release 0.1

Gysen

Jul 05, 2022

INTRO

1 Contents 3
1.1 Source verification . 3
1.2 Immutable invoices . 3
1.3 Client registration flow . 4
1.4 Supplier registration flow . 5
1.5 Invoice api . 6
1.6 Invoice storage . 9
1.7 Invoice verification . 11
1.8 Microservice architecture . 12
1.9 Logging . 12
1.10 Usage . 13
1.11 API . 14

i

ii

Certified PDF Api, Release 0.1

V1 of our Certified PDF Api provides the certified distribution of invoices from supplier to client.
It installs an intermediary verification layer that fulfils a double purpose:

• Verified source:

Clients can declare a whitelist of suppliers through a smart contract, from whom they receive periodical
invoices as a measure of protection against phishing.
The smart contract filters invoices based on their supplier IBAN, and therefore decides whether or not an
invoice transfer is allowed.

• Immutable invoices:

All invoices are stored as encrypted PDF files in MongoDb, after which we generate and store hashes for
each document on a Hedera topic to prevent tampering.
Once the invoice is stored, it is immutable and cannot be changed without being noticed.

This documentation site describes our process flows and technical api architecture.
We rely heavily on multiple rounds of security analysis to determine and eliminate potential security
vulnerabilities.

Note: This project is under active development.

INTRO 1

Certified PDF Api, Release 0.1

2 INTRO

CHAPTER

ONE

CONTENTS

1.1 Source verification

There are different phishing techniques that allow insincere attackers to trick clients into paying wrongful invoices;
through fake emails, redirects to malicious website url’s and misleading domains. If not for the reason of security, the
practise is confusing and all-round annoying for the receiving client. Spam filters allow black lists against insincere
emails, but managing blacklists is not a clean solution to the problem.

For each receiving client, our api creates a default client smart contract upon user registration, which maintains a
whitelist filter of supplier IBAN numbers. The set is empty per default, which implies that clients are themselves
responsible for composing their own whitelist. They should be the only ones to decide who is allowed to send them an
invoice, without requiring to declare who is not (blacklist). The same contract whitelist is then used by our server to
verify whether an invoice pushed by a supplier is allowed to be transferred to, or requested by the client.

1.2 Immutable invoices

All supplier invoices entering the system are stored as encrypted binary files in MongoDb, along with metadata about
the invoice that is needed for further processing.

We protect our database against tampering by hashing database documents with a secret and storing them on a Hedera
topic. Whenever we request data from the database, we can verify whether the document has been tampered with by
verifying the hash.

Warning: We have yet to consider how to handle the case of tampering gracefully, in case it occurs. Since invoices
can never be updated, rolling back to a previous version would be a viable option.

3

Certified PDF Api, Release 0.1

1.3 Client registration flow

1.3.1 Hedera account

The first thing users need to do is to create a Hedera account through the Hashpack browser plugin. It is
much better to create the Hedera account from the client rather than from our server, because the user’s pri-
vate credentials (master password, private key, mnemonic phrase) are never exposed outside of the user’s local
machine. The procedure for registering a Hedera account can be found here: https://www.hashpack.app/post/
how-to-create-your-first-account-with-hashpack.

All interactions between client and the Hedera network should be unique handled from the client without passing
through an intermediary central server.

4 Chapter 1. Contents

https://www.hashpack.app/post/how-to-create-your-first-account-with-hashpack
https://www.hashpack.app/post/how-to-create-your-first-account-with-hashpack

Certified PDF Api, Release 0.1

1.3.2 Register website account

Only after the user has created a Hedera account, (s)he will be able to register an account to our website.

Warning: Consider allowing Google / LinkedIn etc, given that the user allows “email” permission

The preliminary creation of a Hedera account is necessary first, because our backend needs the user’s account address
for transferring ownership of the user’s smart contract after the email address was validated. In the backend we store
the user password encrypted with a slow hashing algorithm (bcrypt), and an additional salt that is included in the hash
to prevent easy recognition of duplicate passwords in the database.

The password that we store is merely useful for logging in into our website to visit user specific content and downloading
invoices. In no way does it expose the Hashpack master password that is used for configuring the whitelist configuration
of suppliers, since this is done through a direction connection from the client to the Hedera smart contract.

The login flow to our website follows the general oAuth2.0 flow. Even in the very unlikely event that the user’s access
token gets stolen during a brief time window, the smart contract’s ownership is safe.

1.3.3 Backend registration flow

The registration flow in the backend follows a standard flow:

1.4 Supplier registration flow

Suppliers should prove that the IBAN they provide during registration is theirs. The client will use the IBAN number
to whitelist the suppliers they receive PDF’s from.

Warning: To be defined: currently unclear

1.4. Supplier registration flow 5

Certified PDF Api, Release 0.1

1.5 Invoice api

6 Chapter 1. Contents

Certified PDF Api, Release 0.1

1.5.1 REST API

Suppliers should send their invoices as https POST multipart requests. The request should contain the PDF they want
to publish, along with a POST body containing meta data. I.e. the client email address they want to send the invoice
to, and possibly a company-specific internal invoice referenceId. The supplier should send a bearer token in the re-
quest’s Authorization header; this is the access token that they obtained during login, and that was provided by our
Authorization server following the oAuth2 token flow.

1.5.2 Token format

Although opaque tokens would have preference (they don’t expose information embedded in the token), it requires a
round trip to the Authorization server for every incoming request. It is more performant to use JWT’s, which can be
parsed locally at the resource server (see oAuth2 architecture) without requiring a remote HTTP call. It could in theory
be possible to encrypt the token to hide the data it contains, but there isn’t really need for this since the JWT won’t
contain any secret identity information. The only thing that matters is that the JWT hasn’t been forged /

1.5.3 Client SDK

Following the oAuth2 flow, access tokens are generally limited in time. Since we want our flow to comply to the
maximum security guidelines, we respect brief expiration times. This also means that the clients need to implement
the oAuth2 refresh token flow to request new access token regularly. It is generally known that this is quite the hassle,
therefore we provide a client SDK that eases the interaction with our API.

Warning: The design of the client sdk needs to be analyzed.

1.5.4 Store input invoices

All pdf’s that enter the system are immediately stored in a collection as encrypted binaries. We use a two-way encryp-
tion, since the pdf’s need to be decrypted when the user wants to view or download them. One reason is that it is better
not to send full PDF documents as binaries through Rabbit queues because of their message size. It is better to store all
documents in persistent storage, while sending meta data about the stored document through the queue. This requires
less bytes to be transferred and instead allows for lightweight messaging.

Another reason is that not all PDF’s will be validated positively. We keep track of all PDF’s that entered the system in
order to handle rejected invoices gracefully based on the reason of rejection.

Warning: To be decided if we need to generate proofs for all input documents (I think the answer is yes).

1.5. Invoice api 7

Certified PDF Api, Release 0.1

1.5.5 RabbitMq

To manage high loads of POST requests, we are required to use a queueing system like RabbitMQ (AMQP protocol) to
handle back pressure (data buffering between processes). Although the REST api that we expose uses multithreading,
it is insufficient on its own under high pressure. The number of rabbit listeners can be configured in Java to allow
parallel processing.

Note: Although our system would benefit from using a reactive API, Java SDK19 comes with the loom Project that
supports Virtual Threads in Preview mode. At least initially it is fine to write code in blocking fashion, and use Virtual
Threads once they’re ready to use in Production.

1.5.6 Bulk uploads

We define 3 request types that can be sent to our api, categorised by the heaviness of the load (low, average, high).
The lowest request type involves a manual / low number of expected requests, whereas the highest involves bulk / mass
uploads.

Note: Initially we will focus on the manual upload implementation first, as contains the easiest architecture. We will
gather metrics, and can decide later whether bulk uploads are worth it.

We enforce limitations on the load by implementing a rate limiter.

Warning: Further measures will be taken to ensure that the number of requests can be controlled. If we were to
upscale in order to perform mass uploads, it is important to ensure that uploads from one supplier don’t impact the
performance of another. To be determined later.

8 Chapter 1. Contents

Certified PDF Api, Release 0.1

1.6 Invoice storage

Before storing the PDF, we verify if the pdf size is acceptable (eg. 100Kb), and may apply compression if necessary.

Warning: Compression degrades the PDF quality. The easy solution is just to reject PDF’s that are too large
which comes with its own downsides for suppliers. To be decided.

Theoretically it is possible to store invoices as embedded documents within User documents. In our case we store them
in a separate collection because we will generate and store proofs on Hedera for each invoice separately. When the user
wants to view / download an invoice, the hash will be verified.

1.6. Invoice storage 9

Certified PDF Api, Release 0.1

Warning: To be decided whether or not we will use GridFs to store the documents. MongoDb allows storing files
directly in a document up to 16MB, which is plenty for our use case. The trade off between the two has yet to be
determined.

10 Chapter 1. Contents

Certified PDF Api, Release 0.1

1.7 Invoice verification

1.7.1 Find client user smart contract

Based on the the email address of the client user (the receiver of the invoice), we query the Hedera network using an
HTTP call to their mirror nodes in order to find their client smart contract address: https://testnet.mirrornode.hedera.
com/api/v1/ Hedera mirror nodes are read-only nodes; they get populated with data from the main nodes through a
gossiping protocol, in order to improve the performance quality of the Hedera network.

Warning: We should consider the time it takes for mirror nodes to be populated from the main nodes. If an
invoice is sent while the user smart contract doesn’t exist yet, then it means the verification can’t be done. This can
be solved by storing these invoices in a dedicated collection to be processed by a scheduler at a later time.

1.7. Invoice verification 11

https://testnet.mirrornode.hedera.com/api/v1/
https://testnet.mirrornode.hedera.com/api/v1/

Certified PDF Api, Release 0.1

1.7.2 Validate supplier

We verify if the supplier has been whitelisted by the client user by making a call to their smart contract. Reading from
the smart contract doesn’t require a user’s private key, nor does it cost transaction fee. If the supplier was not found,
then the message should be sent to an exception queue, to gracefully handle requests that were declined.

Warning: We should consider what to do with clients that don’t have a smart contract. Did something go wrong
during contract creation? Should we send an email to receivers that haven’t registered with our application as
promotion?

Warning: We should consider what to do with invoices that get rejected. Should we inform the supplier of rejected
invoices? As discussed, if a user doesn’t have an account yet, we will still send them an email with different template.

1.8 Microservice architecture

We apply a microservice architecture, which means that we run every service as an isolated process.

The first reason is that failure of one process should not impact another. If, for example, the process of PDF storage
fails for some reason and requires a restart, this shouldn’t impact user registration, or the registration / verification of
incoming PDF’s received from suppliers.

The second reason is that microservices allow us to dynamically distribute and scale the processes independently. One
process may be more cpu intensive than another, and one process may require more time to process compared to another.
Depending on the cluster technology used, we will be able to choose for an optimal setup in which we can monitor and
scale different processes dynamically depending on the need that we observe.

In order to save on initial cost, it should be sufficient to use a single database.

1.9 Logging

For logging, the EFK (or ELK) stack is a common tool for professional log analysis. Since microservices are run in a
distributed environment, we use a centralised logging system.

EFK (ElasticSearch - FluentD - Kibana) is used to store log messages in an ElasticSearch database (based on Apache
Lucene, performing full text query searches), while Kibana can be used to visualising logs.

12 Chapter 1. Contents

Certified PDF Api, Release 0.1

FluentD is a log collector that listens to aggregated application log streams (from different applications), and can be
configured (among others) as a whitelist for filtering logs based on string patterns.

1.10 Usage

1.10.1 Installation

To use Lumache, first install it using pip:

(.venv) $ pip install lumache

1.10.2 Creating recipes

To retrieve a list of random ingredients, you can use the lumache.get_random_ingredients() function:

The kind parameter should be either "meat", "fish", or "veggies". Otherwise, lumache.
get_random_ingredients() will raise an exception.

For example:

>>> import lumache
>>> lumache.get_random_ingredients()
['shells', 'gorgonzola', 'parsley']

1.10. Usage 13

Certified PDF Api, Release 0.1

1.11 API

14 Chapter 1. Contents

	Contents
	Source verification
	Immutable invoices
	Client registration flow
	Hedera account
	Register website account
	Backend registration flow

	Supplier registration flow
	Invoice api
	REST API
	Token format
	Client SDK
	Store input invoices
	RabbitMq
	Bulk uploads

	Invoice storage
	Invoice verification
	Find client user smart contract
	Validate supplier

	Microservice architecture
	Logging
	Usage
	Installation
	Creating recipes

	API

